Thermal properties and crystallization of PbO–MoO₃–P₂O₅ glasses

Ivana Rösslerová · Ladislav Koudelka · Zdeněk Černošek · Petr Mošner · Ludvík Beneš

Received: 7 March 2011/Accepted: 11 May 2011/Published online: 26 May 2011 © Springer Science+Business Media, LLC 2011

Abstract Thermal properties and crystallization of glasses from PbO-MoO₃-P₂O₅ ternary system were studied in three compositional series $(100 - x)[0.5PbO-0.5P_2O_5]$ $xMoO_3$ (A), 50PbO- $yMoO_3$ -(50 - $y)P_2O_5$ (B), and (50 - z) $PbO-zMoO_3-50P_2O_5$ (C). Glass transition temperature, crystallization temperature, coefficient of thermal expansion, and dilatation softening temperature of the studied glasses were determined by differential thermal analysis and dilatometry. Crystallization products of annealed glass samples were investigated by X-ray diffraction and Raman spectroscopy. X-ray diffraction analysis of crystallized glasses revealed the formation of PbP2O6, Pb3P4O13, and PbMoO₄ in the samples of the B series. In the series A and C in the samples with a high MoO₃ content, crystalline compounds of Pb(MoO₂)₂(PO₄)₂ and (MoO₂)(PO₃)₂, respectively, were identified. Raman spectra of crystalline samples confirmed the results of X-ray diffraction measurements and provided also information on thermal stability of glasses and formation of glass-crystalline phases in the studied glass series.

I. Rösslerová · L. Koudelka (⊠) · Z. Černošek · P. Mošner Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic e-mail: ladislav.koudelka@upce.cz

L. Beneš

Introduction

Phosphate glasses with additions of tungsten oxide or molybdenum oxide offer prospective applications for their electrochromic properties and high ionic conductivity [1, 2]. Silver- and lithium-containing molybdato-phosphate glasses were investigated for their prospective applications as ionic conductors [3]. Phosphate glasses belong also among possible candidate materials for the vitrification of nuclear wastes with molybdenum because they possess high waste loading capacities [4, 5]. Therefore, study of their thermal behavior and the process of their crystallization are interesting for potential application of these glasses.

Chowdari et al. [3, 6, 7] reported thermal and conductivity studies of Ag₂O-MoO₃-P₂O₅ and Li₂O-MoO₃-P₂O₅ system glasses. Bih et al. [8] prepared (1 - x)NaPO₃-xMoO₃ glasses with x = 0-0.5 and studied their thermal properties, EPR and their structure from IR spectra. They found nonregular variation of the glass transition temperature, T_{g} , with increasing MoO₃ content with a maximum close to x = 0.2. Santagnelli et al. [9] studied also (1 - x)NaPO₃-xMoO₃ glass series, but they prepared glasses within the broader compositional region of $0 \le x \le 0.7$. They found also a maximum on the compositional dependence of $T_{\rm g}$ values, but much higher at x = 0.45. Thermal properties of Li₂O-MoO₃-P₂O₅ and Na₂O-MoO₃-P₂O₅ glasses studied Bih et al. [10] in three compositional series within the glass forming region and gave the data on glass transition temperatures and crystallization temperatures.

Lead phosphomolybdate glasses were studied by Selvaraj and Rao [11] in two compositional series (80 - x)PbO-20P₂O₅-*x*MoO₃ and (60 - x)PbO-40P₂O₅-*x*MoO₃ with 20 and 40 mol% P₂O₅. They applied DSC technique for the determination of glass transition temperature and

Joint Laboratory of Solid State Chemistry of Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic and the University of Pardubice, 532 10 Pardubice, Czech Republic

heat capacity of glasses in these two compositional series of the PbO–MoO₃–P₂O₅ system. Our recent studies [12] devoted to the study of structure of glasses in the PbO– MoO₃–P₂O₅-ternary system by Raman and ³¹P NMR spectroscopy showed on the formation of MoO₆ octahedral units in most glasses of the system, but also on the existence of tetrahedral MoO₄ units in glasses with a high MoO₃ content and a low P₂O₅ content.

In this work, thermal behavior and crystallization of glasses in the PbO-MoO₃-P₂O₅ ternary system were investigated in three compositional series starting from Pb(PO₃)₂ and containing \leq 50 mol% P₂O₅.

Experimental

Glasses of the PbO-MoO₃-P₂O₅ system were prepared from reagent grade PbO, H₃PO₄ and MoO₃ in batches of 25 g. In the first stage, the reaction mixture was heated slowly in a platinum crucible up to 600 °C with the final calcination at the maximum temperature for 2 h to remove water. After the calcination the reaction mixture was heated up to the 800-1000 °C, according to the composition. After 20 min heating at the maximum temperature, the melt was cooled by pouring into a graphite mold. The obtained glasses were separately annealed for 15 min at a temperature close to their $T_{\rm g}$ and then slowly cooled to room temperature. Glass composition was checked by weighing and also by chemical analysis. The changes in the MoO₃ content were lower than 0.5 mol%. The amorphous character of the obtained glasses was checked by X-ray diffraction analysis.

Thermal behavior of glasses was studied with the DTA 404 PC (Netzsch) operating in the DSC mode at the heating rate of 10 °C min⁻¹. From the obtained, DTA curves glass transition transformation temperature, T_{g}^{a} was determined as the onset of the change in the heat capacity, $C_{\rm p}$, in the glass transformation region and crystallization temperature, $T_{\rm c}$, of the glasses was determined as the onset of the exothermic crystallization peak. The measurements were carried out on powder samples with a mean diameter 8-10 µm placed in silica crucibles under an atmosphere of N₂. The thermal expansion coefficient, α , the glass transition temperature, T_{g} , and dilatation softening temperature, T_{d} , were measured on bulk samples with dimensions of $25 \times 5 \times 5$ mm using dilatometer DIL 402 PC (Netzsch). From the obtained dilatation curves, the coefficient of thermal expansion, α , was determined as a mean value in the temperature range of 100-200 °C, the glass transition temperature, T_g^b , was determined from the change in the slope of the elongation versus temperature plot and the dilatation softening temperature, T_d , was determined as the maximum of the expansion trace corresponding to the onset of viscous deformation. The dilatometric measurements were carried out in air at the heating rate of 5 °C min⁻¹.

Glass crystallization was studied by annealing the powdered glass samples at temperatures slightly above their crystallization peak for 2 h. Crystalline products were identified by X-ray diffraction analyses of annealed samples on Bruker D8 Advance X-ray diffractometer with the application of PDF 4 database for the determination of crystalline products.

Annealed samples were also analyzed by Raman spectroscopy for the identification of glass-crystalline phases. The Raman spectra were measured at room temperature using Horiba Jobin-Yvon LabRam HR spectrometer. The spectra were recorded in back-scattering geometry under excitation with He–Ne laser radiation (632.8 nm) at a power of 12 mW. The spectral slit width was 1 mm, exposure time was 3 s and accumulation number was 10.

Results and discussion

We have prepared 14 glass samples of the PbO–MoO₃– P₂O₅ ternary system by slow cooling of the corresponding melt in air to room temperature. Their amorphous character was confirmed by X-ray diffraction. We have studied changes in their thermal properties in three compositional series $(100 - x)[0.5PbO-0.5P_2O_5]$ – $xMoO_3$ (series A), 50 PbO– $yMoO_3$ -(50 – $y)P_2O_5$ (series B) and (50 – z)PbO-zMoO₃–50P₂O₅ (series C). Their composition is shown in Table 1. Glass samples containing MoO₃ were of blue color showing on the presence of Mo⁵⁺ species in the glasses which was confirmed by EPR spectroscopy. The EPR studies also showed that the ratio of Mo⁵⁺/Mo^{total} in most samples is lower than 0.9%.

DSC curves obtained for the glass series (A) are shown in Fig. 1. The values of glass transition temperature, T_{g}^{a} and crystallization temperature T_c , determined from DSC curves are given in Table 1. We have determined glass transition temperature by two methods. From DSC curves, T_{σ}^{a} values were determined as the intersection between the extrapolated line of the glass heat flow before $T_{\rm g}$ and the extrapolated line of the changing heat flow in the glass transition region, according to the procedure proposed by Yue [13]. The values of T_g^a determined by this procedure from the onset of the change in heat flow on DSC curves in the glass transformation region are very close to T_{g}^{b} values obtained from the change in the slope of the elongation versus temperature plot of the dilatometric measurements in agreement with [13]. In Table 1, the values of both T_{σ} are given. On some DSC curves also endothermic peaks of

Table 1 Compositions of studied glasses and their glass transition temperature, T_g^{a} (onset on the DSC curve), T_c^{a} (onset of crystallization peak), criterion of thermal stability of glasses, $T_c^{a} - T_g^{a}$,

glass transition temperature, T_g^{b} (measured by dilatometry), dilatation softening temperature, T_d^{b} , and thermal expansion coefficient, α , of PbO–MoO₃–P₂O₅ glasses

Samples	PbO (mol%)	MoO ₃ (mol%	P_2O_5	$T_{\rm g}^{\rm a} \pm 2$ (°C)	$T_{\rm c}^{\rm a} \pm 2$ (°C)	$T_{\rm c}^{\rm a} - T_{\rm g}^{\rm a}$ (°C)	$T_{\rm g}^{\rm b} \pm 2$ (°C)	$T_{\rm d}^{\rm b} \pm 2$ (°C)	α ± 0.5 (ppm/°C) (100–200 °C)
Series A	50	0	50	309	401	92	310	330	17.9
	45	10	45	340	545	205	338	352	16.5
	40	20	40	364	-	_	362	378	15.6
	35	30	35	401	-	_	399	407	15.2
	30	40	30	418	608	190	416	430	14.1
	25	50	25	420	592	172	417	435	13.7
	20	60	20	392	528	136	394	411	14.0
	15	70	15	367	464	97	365	379	14.4
Series B	50	0	50	309	401	92	310	330	17.9
	50	10	40	350	520	170	351	373	17.1
	50	20	30	409	550	141	408	427	16.1
	50	30	20	420	490	70	418	435	15.9
Series C	50	0	50	309	401	92	310	330	17.9
	40	10	50	338	550	212	338	352	13.4
	30	20	50	395	627	232	396	422	13.0
	20	30	50	310	528	218	310	336	11.9

melting of the crystallized glasses can be seen with their characteristic temperature $T_{\rm m}$, usually determined as the onset of the endothermic peaks.

In the (A) series $(100 - x)[0.5PbO-0.5P_2O_5]-xMoO_3$ (0 < x<70) under slow cooling in air, we prepared glasses in the compositional range of 0–70 mol% MoO₃. Their

Fig. 1 DSC curves of the glass series $(100 - x)[0.5PbO-0.5P_2O_5] - xMoO_3$ (A series). The values of T_g and T_c are given in Table 1

glass transition temperature, according to DTA measurements, increases with increasing MoO₃ content from 309 °C with increasing MoO₃ content and reaches a maximum of 420 °C at the glass with 50 mol% MoO₃ and then decreases. The T_g values obtained from dilatometric curves (Table 1) are close to those determined from DSC curves as the onset of the change in heat flow in the glass transition region (Fig. 1). As the changes in ΔC_p within the glass transition region on the DSC curves of glasses with x = 40-70 mol% MoO₃ in Fig. 1 are too small, the magnified part of the DSC curves is shown in Fig. 2 together with an example of the determination of T_g . Most glasses

Fig. 2 Part of DSC curves of the glass series $(100 - x)[0.5PbO-0.5P_2O_5]-xMoO_3$ (A series) magnified for the demonstration of the determination of T_g^a values for the samples with x = 40-70 mol% MoO₃

crystallize on heating as manifested on DSC curves in Fig. 1 by the presence of an exothermic crystallization peak. Crystallization temperatures determined as the onset of the crystallization peak are also given in Table 1. Most thermally stable glasses in this series are those containing 20-30 mol% MoO₃ which do not crystallize on heating. Coefficient of thermal expansion decreases with increasing MoO₃ content from 17.9 ppm/°C down to 13.7 ppm/°C at the glass with 50 mol% MoO₃ and then slowly increases. Glass transition temperature in the series (B) 50PbO $yMoO_3-(50 - y)P_2O_5$ also increases with increasing MoO₃ content and reaches a maximum of 420 °C at the glass with 30 mol% MoO₃, whereas thermal expansion coefficient decreases but goes down only to 15.9 ppm/°C (see Table 1). In the glass series (C) (50 - z)PbO-zMoO₃- $50P_2O_5$, the T_g and T_c values increase within the range of 0--20 mol% MoO₃ and then decrease, whereas thermal expansion coefficient goes rapidly down.

In order to indentify products of crystallization of the studied glasses, we have milled the glass samples and heat treated the obtained powder for 2 h at temperatures slightly above their corresponding crystallization peaks. The annealing temperatures are given in Table 2 together with the composition of crystalline phases identified by X-ray diffraction analysis in all three glass series. For the identification of the results of crystallization, we have applied also the Raman spectroscopy and the obtained Raman spectra are shown in Figs. 3, 6, and 7.

In the glass series (A) $(100 - x)[0.5PbO-0.5P_2O_5]-xMoO_3$ in samples with 0-10 mol% MoO₃ the only crystalline phase identified in crystallization products by X-ray diffraction was lead metaphosphate PbP2O6. Raman spectra also revealed the presence of crystalline lead metaphosphate with characteristic strong vibrational bands of 1150 and 670 cm⁻¹ [14]. Raman spectrum of the glass with x =10 mol% MoO₃ (Fig. 3) shows within the region of 820-980 cm⁻¹ also the presence of two broad Raman bands characteristic of the presence of molybdate structural units in the glassy phase [15, 16]. It means that the annealed sample contains one crystalline phase (PbP₂O₆) and one glassy phase containing MoO₃. Glasses with x = 20-30 mol%MoO₃ are thermally stable and do not reveal any crystallization peak on DSC curves on heating with the heating rate of 10 °C/min. Also their annealing at three different temperatures did not result in their crystallization as revealed by X-ray diffraction and their Raman spectra (Fig. 3) reveal only the presence of glassy phase with two dominant broad bands within the region of 850-970 cm⁻¹ ascribed to vibrations of molybdate units [15, 16]. DSC curve on heating the sample with $x = 40 \text{ mol}\% \text{ MoO}_3$ does not show any visible crystallization peak, but shows a weak endothermic melting peak at 696 °C which reveals a partial crystallization of the glassy sample. X-ray diffraction analysis of annealed samples with x = 40 and 50 mol% MoO₃ identified the presence of one crystalline phase of the composition of $Pb(MoO_2)_2(PO_4)_2$. Its composition corresponds exactly to

Samples	PbO (mol%)	MoO ₃ (mol%)	$P_2O_5 \pmod{\%}$	$T_{\rm c}$ (°C)	Products of crystallization (PDF No. [24])
Series A	50	0	50	480	PbP ₂ O ₆ (04-010-2426)
	45	10	45	580	PbP ₂ O ₆ (04-010-2426)
	40	20	40	490, 550, 600	_
	35	30	35	490, 550, 600	_
	30	40	30	600	Pb(MoO ₂) ₂ (PO ₄) ₂ (04-012-8283)
	25	50	25	600	Pb(MoO ₂) ₂ (PO ₄) ₂ (04-012-8283)
	20	60	20	560	Pb(MoO ₂) ₂ (PO ₄) ₂ (04-012-8283)
					MoO ₃ (00-005-0508)
	15	70	15	560	Pb(MoO ₂) ₂ (PO ₄) ₂ (04-012-8283)
					MoO ₃ (00-005-0508)
Series B	50	0	50	480	PbP ₂ O ₆ (04-010-2426)
	50	10	40	540	Pb ₃ P ₄ O ₁₃ (04-010-1540)
	50	20	30	560	Pb(MoO ₂) ₂ (PO ₄) ₂ (04-012-8283)
					Pb ₂ P ₂ O ₇ (00-043-0469)
	50	30	20	505	PbMoO ₄ (01-074-1075)
Series C	50	0	50	480	PbP ₂ O ₆ (04-010-2426)
	40	10	50	570	PbP ₂ O ₆ (04-010-2426)
	30	20	50	490	PbP ₂ O ₆ (04-010-2426)
	20	30	50	570	(MoO ₂)(PO ₃) ₂ (01-074-1389)

Table 2 Annealing temperatures and crystallization products of glasses of the system $PbO-MoO_3-P_2O_5$

Fig. 3 Raman spectra of the annealed $(100 - x)[0.5PbO-0.5P_2O_5]-xMoO_3$ samples (A series). Crystalline phases identified by XRD in the annealed samples are given in Table 2

the glass with $x = 50 \text{ mol}\% \text{ MoO}_3$ and on its DSC curve, there is one exothermic peak of crystallization and one endothermic melting peak. In the annealed samples of glasses with x = 60 and 70 mol% MoO₃ X-ray diffraction found the presence of the compound Pb(MoO₂)₂(PO₄)₂ and crystalline MoO₃. The DSC curve of the sample with $x = 60 \text{ mol}\% \text{ MoO}_3$ (Fig. 1) shows two melting peaks which corresponds to the presence of two crystalline phases. Raman spectra of these samples (Fig. 3) are in good agreement with the results of XRD.

We have devoted our attention also to the compound of $Pb(MoO_2)_2(PO_4)_2$. Its structure was determined by Masse et al. [17]. This compound is interesting for the study due to its ability to form glassy state. As the chemical composition of the melt and the corresponding crystalline phase are the same, it is possible to evaluate the processes of crystallization and melting. On the bases of several DTA measurements with the heating rate within the range of 5-20 °C/min in the first step the activation energy of crystallization was determined as $E_{\rm c}^* = 308 \pm 3$ kJ/mol (3.19 \pm 0.03 eV) with the application of Kissinger method [18]. In the second step, we have applied obtained data also for the evaluation of an appropriate kinetic model of the crystallization process. We have found that the crystallization kinetics can be described by the Sesták-Berggren model SB(m, n) [19] with parameters of $m = 0.88 \pm 0.18$ $n = 1.52 \pm 0.31$.

We have determined also melting temperature of the Pb(MoO₂)₂(PO₄)₂ compound as $T_{\rm m} = 706 \pm 3$ °C, peak temperature of the melting process was $T_{\rm p,m} = 747 \pm 7$ °C. Melting enthalpy was determined as $\Delta H_{\rm m} = 39.7 \pm 1.4$ J/g. We have also evaluated glass transformation process in the glass of this composition. Glass transition temperature increases with increasing heating rate from 417 °C (5 °C/min) to 424 °C (20 °C/min). Activation energy of glass transition process was evaluated also with the application of Kissinger method [18] as $E_{T_g}^* = 496 \pm 39$ kJ/mol (5.14 ± 0.51 eV). The change in the isobaric heat capacity at the glass transition is $\Delta C_{\rm p} = 0.138$ J/(g K).

In Fig. 4, there is a comparison of Raman spectra of polycrystalline compound $Pb(MoO_2)_2(PO_4)_2$ and the corresponding glass. Raman spectra of the polycrystalline compound are in a good agreement with the tabular data of Raman spectra given by Isaac et al. [20]. From Fig. 4, it is evident that the main features of the Raman spectrum of the glass can be obtained by broadening the bands of the Raman spectrum of the crystals corresponding to fluctuations of bonding angles and bond lengths in the disordered glassy network. From the similarity of basic spectral features of both spectra, we can assume that the short-range order in the glass is similar to that in the crystal Pb(MoO_2)_2(PO_4)_2 and that basic structural units in both phases are probably the same.

In the (B) series of glasses 50PbO– $yMoO_3$ –(50 – y) P₂O₅ under slow cooling in air, we prepared glasses in the compositional range of 0–30 mol% MoO₃. Their glass transition temperature increases also with increasing MoO₃ content by 111 °C as shown on DSC curves in Fig. 5. All glasses crystallize on heating and the difference $T_c - T_g$ is the highest at the glass with y = 10 mol% MoO₃. Crystallization temperatures determined as the onset of

Fig. 4 Raman spectra of the polycrystalline $Pb(MoO_2)_2(PO_4)_2$ compound and the $50[0.5PbO-0.5P_2O_5]-50MoO_3$ glass

Fig. 5 DSC curves of the glass series 50PbO– $(50 - y)P_2O_5$ – $yMoO_3$ (B series). The values of T_g and T_c are given in Table 1

crystallization peak are given in Table 1. X-ray diffraction revealed various products formed in the annealed samples (Table 2). Crystalline PbP_2O_6 is formed only in the crystallized pure lead metaphosphate glass, whereas in the sample with y = 10 mol% MoO₃ the presence of lead tetraphosphate Pb₃P₄O₁₃ was identified. Lead diphosphate $Pb_2P_2O_7$ is formed in the annealed sample with y = 20mol% MoO₃ together with the compound Pb(MoO₂)₂ (PO₄)₂ identified also in the series A. The XRD analysis of the crystallized sample with $y = 30 \text{ mol}\% \text{ MoO}_3$ identified lead molybdate PbMoO₄ as the only crystalline phase. It means that some lead phosphate remained in the glassy state here. Raman spectra of the annealed samples (Fig. 6) are in good agreement with the results of XRD analysis. In the sample with x = 10 mol% MoO₃ molybdate phase remains amorphous as evidenced by a broad Raman band within the region of $850-970 \text{ cm}^{-1}$. The presence of crystalline phase $Pb(MoO_2)_2(PO_4)_2$ is evident in the annealed simple with $y = 20 \text{ mol}\% \text{ MoO}_3$, where characteristic Raman bands are similar to those shown in Fig. 5.

In the (C) series of glasses (50 - z)PbO–zMoO₃– 50P₂O₅, we prepared glasses with z = 0–30 mol% MoO₃. Thermal analysis showed here also an increase in the glass transition temperature with increasing MoO₃ content, but both T_g and T_c values at the glass with z = 30 mol% MoO₃ are lower. Previous study [11] revealed in this glass a high content of Mo⁵⁺ ions, the presence of which according to Flower et al. [21] weakens the glass network, as Mo⁵⁺ ions occupy network-modifying positions in the glass structure and decrease the rigidity of the glass network. This conclusion could explain decreased values of T_g in the glass 20PbO–50P₂O₅–30MoO₃. Coefficient of thermal expansion decreases here with increasing MoO₃ content as shown in Table 1.

Fig. 6 Raman spectra of the annealed 50PbO– $(50 - y)P_2O_5-yMoO_3$ samples (B series). Crystalline phases identified by XRD in the annealed samples are given in Table 2

XRD analysis identified in the annealed samples with $z = 0-20 \text{ mol}\% \text{ MoO}_3$ only PbP₂O₆ as the crystalline phase, whereas molybdate phase remained amorphous as evidenced from the Raman spectra (Fig. 7) of these samples by the presence of two broad bands within the range of 850–970 cm⁻¹. In the sample with z = 30 mol%, MoO₃ crystalline phase of the composition (MoO₂)(PO₃)₂ was identified by XRD analysis. This result is in agreement with the Raman spectra of annealed samples (Fig. 7), where the characteristic band of the compound (MoO₂)(PO₃)₂ at 984 cm⁻¹ was observed. This dominant Raman band

Fig. 7 Raman spectra of the annealed $(50 - z)PbO-50P_2O_5-zMoO_3$ samples (C series). Crystalline phases identified by XRD in the annealed samples are given in Table 2

corresponds to the dominant band in the Raman spectrum of the $(MoO_2)(PO_3)_2$ compound published by Morgan and Magruder [22]. The structure of crystalline $(MoO_2)(PO_3)_2$ contains MoO_6 octahedra and chains of PO_4 units [23]. Annealed sample with $z = 30 \text{ mol}\% \text{ MoO}_3$ contains a part of the sample in the glassy state as evidenced in its Raman spectrum by the presence of a broad Raman bands within the range of 850–1000 cm⁻¹.

Conclusion

Study of thermal behavior and crystallization of PbO-MoO₃-P₂O₅ ternary system glasses by combined techniques of thermal analysis, X-ray diffraction, and Raman spectroscopy showed to be very effective from the point of characterization of annealed samples. DSC studies showed on a good thermal stability of glasses of the A series with 20-30 mol% MoO₃, which do not crystallize on heating or annealing. Basic characterization of crystalline products by XRD is naturally most important. Nevertheless, Raman spectroscopy is able not only to verify obtained crystalline products, but also to detect the existence of glassy phases in the samples which do not crystallize completely. Crystallization of some glassy samples showed on the formation of crystalline lead molybdato-phosphate compound $Pb(MoO_2)_2(PO_4)_2$ in some glasses with a high MoO_3 content. We assume that some structural motifs of this compound are present in the corresponding glasses. In the P₂O₅-rich crystallized samples, another compound (MoO₂)(PO₃)₂ was identified, the structure of which contains MoO₆ octahedra and PO₄ tetrahedra, and we are convinced that short-range order in crystalline and glassy phases is the same.

Acknowledgements The authors are grateful for the financial support from the research project No. P106/10/0283 of the Grant Agency of Czech Republic and from the research project No. 0021627501 of the Ministry of Education of Czech Republic.

References

- 1. Zakis YR, Lusis AR, Lagzdons YL (1982) J Non-Cryst Solids 47:267
- 2. Studer F, Lebail A, Raveau B (1986) J Solid State Chem 63:414
- Chowdari BVR, Gopalakrishnan R, Tang SH, Kuok SH (1988) Solid State Ion 28–30:704
- 4. Pinet O, Dussossoz JL, David C, Fillet C (2008) J Nucl Mater 377:307
- 5. Chourasia R, Shrivastava OP, Wattal PK (2009) J Alloys Comp 473:579
- Chowdari BVR, Tan KL, Chia WT, Gopalakrishnan R (1990) Solid State Ion 40–41:684
- Chowdari BVR, Tan KL, Chia WT, Gopalakrishnan R (1991) J Non-Cryst Solids 128:18
- 8. Bih L, Nadiri A, El Amraoui Y (2005) J Phys IV Fr 123:165
- Santagneli SH, de Araujo CC, Strojek W, Eckert H, Poirier G, Ribeiro SJL, Messadeq Y (2007) J Phys Chem B 111:10109
- 10. Bih L, Nadiri A, Aride J (2002) J Therm Anal Calorim 68:965
- 11. Selvaraj U, Rao KJ (1988) J Non-Cryst Solids 104:300
- Koudelka L, Rösslerová I, Holubová J, Mošner P, Montagne L, Delevoye L (2011) J Non-Cryst Solids. doi:10.1016/j.jnoncrysol. 2011.03.006
- 13. Yue Y-Z (2008) J Non-Cryst Solids 354:1112
- 14. Bobovich YaS (1962) Opt Spektrosk 13:459
- Chowdari BVR, Tan KL, Chia WT (1993) Mater Res Soc Symp Proc 293:325
- Šubčík J, Koudelka L, Mošner P, Montagne L, Trickot G, Delevoye L, Gregora I (2010) J Non-Cryst Solids 356:2509
- Masse R, Averbuch-Pouchot MT, Durif A (1985) J Solid State Chem 58:157
- 18. Kissinger HE (1957) Anal Chem 29:1702
- 19. Šesták J, Berggren G (1971) Thermochim Acta 3:1
- 20. Isaac M, Jayasree V, Suresh G, Nayar VU (1992) Ind J Phys B 66:65
- Flower GL, Baskaran GS, Reddy MS, Veeraiah N (2007) Phys B 2393:61
- 22. Morgan SH, Magruder RH (1990) J Am Ceram Soc 73:753
- 23. Kierkegaard P (1961) Ark Kemi 18:521
- 24. Joint Committee on Powder Diffraction Standards, International Centre of Diffraction Data, Swarthmore, PA, USA